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Abstract—Two quadratic extremum principles for finite strains of rigid—viscoplastic continua with
pieccewise lincar constitutive laws are derived from and formulated using both the Eulerian and
Lagrangian descriptions of the continuum motion. The principles generalize to finite strains two
previous extremum properties of the dynamic solution of rigid-plastic small-strain, large dis-
placement bodies found by Capurso. Stolarsky and Belytschko's recent non-quadratic theorem is
shown to be a special form of one of the two theorems when the functional dependence from a
vartable s implicitly expressed.

. INTRODUCTION

The problem of determining the large displacement dynamic response of a body under a
given high intensity loading has found, on the widely accepted assumption that the elastic
strains are small as compared to total strains, a fundamental hypothesis for the development
of a number of methods and numerical techniques forming an important part of the more
recent developments the plastic body theory.

In this context Tamuzh's[1] extremum principle, which gives the acceleration field of
a rigid-plastic solid at a given time, the velocity ficld as well as body and surface forces
being known, was extended by Capurso[2] with two extremum principles to the large
displacement (small strain) case in the presence of a rigid-viscoplastic solid with a piccewise-
linear yicld surface. In these extensions the functionals to optimize involve the acceleration
and stress field, or the acceleration and plastic multiplier acceleration field, respectively.

A corresponding quadratic programming formulation was also derived by the same
author in a finite clement context.

More recently, Stolarsky and Belytschko[3] extended Tamuzh’s principle to the more
general case of large strains with a smooth yield surface and presented the results of an
application to the particular case of rod structures, using a numerical procedure to determine
the rigid-plastic response by solving a series of quadratic programming problems.

In this paper Capurso’s principles are extended to cover the general case of finite strains
and the two corresponding principles obtained involve the same pair of functions. They are
both derived by the Eulerian and Lagrangian descriptions of the deformations (kinematic
description) and of stresses (kinetic description).

In Section 2 the general formulation of the constitutive laws of rigid-plastic materials
on the assumption of a piccewise-lincar yicld surface and finite strains, is given for both
descriptions considering the need to refer to objective quantities in order to provide a
description independent of the reference system.

Section 3 is concerned with the formulation of the problem using both the Lagrangian
and Eulerian approaches, while in Section 4 extremum principles are derived.

Finally, Section 5 deals with the particularization of the new principles to the previous
ones by Capurso (large displacements with small strains) and to the derivation of Stolarsky
and Belytschko's formulation.
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2. CONSTITUTIVE LAWS

2.1. Eulerian approach

Reference is made in the following to the Eulerian description of the kinetics and
kinematics. In a Cartesian orthogonal reference system let x; be the current position occupied
by a particle at time ¢ and let g, be its original position at time ¢ = 0. The components v, of
the finite displacement vector of the particle are then given by

u, = x;,—a, n

In this context the strain field will be described by the Almansi strain tensor defined
by

€; = %(ui/j'*' Wi — Uity ;). 3]

The stress field will be described in the following through the Cauchy stress tensor g,
the components of which refer to the strained state of the body. Besides, the assumption is
made of rigid—viscoplastic hardening and associated material behaviour with yield domain,
delimited, in the stress space o, by n planes

O, = Nywoyu—k, <0 (x=1.....n) 3)
where N7, are the n outward unit vectors normal to the # yield planes, and

k,=r,+ Z II:[I}:[I 4
]

where r, defines the yield polyhedron plane distances from the origin in the original (virgin)
state of the material, the interaction coefficients H,; define the hardening rule, and 4,
denotes the plastic multiplier rates. In what follows r,, H,, are assumed to be independent
of 1 and matrix H,, to be symmetric definite positive.

In order to ensure the invariance of the yield function with respect to any rigid body
motion of the material particle, the yield condition, eqn (3), must be expressed as a function
of the corotational stress tensor

&U = RmUhkRk/ &)

where R,, defining the rigid body motion of the particle, is obtained by decomposing the
deformation gradient

E,=%=5,-,+37u; (6)
into the product of the rotation tensor Ry and a (right) stretch tensor U,; in the form
Fy= RuUy,; O]
being
RyRy =9, and R,R =9, (8)
Then the yield condition, eqn (3), becomes
¢, = Noyy6y—k, <0 3)

where
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Nu{ = Ry, :k*Rk,«' 9
is invariant in the corotational reference system, and
N7 = RyNu Ry (10)

In order to describe the associated flow rule the Almansi strain tensor is used as a
measure of deformations. However, the rate

éu = %(“1 /+ ‘.‘j i) - (elkLk]+ Lkiekj) (I l)
is not conjugate to Cauchy stress (their scalar product does not give work) and the rate
DU = %(uijj'*'l;j'l) (lz)

(called ""rate of deformation tensor™) will be used. Then, through eqn (3), the associated
flow rule becomes

. Oy ¢
Dri::z"t {-""=Z"'1Nni (13)
T 00, 4
under the constraints
P, <0.4,20 04, =0 (14)

Limitation to the acceleration ficld é, must then be derived from egns (13) and (14)
equally involving objective quantitics. However, from the material derivative of eqn (13),
the following is obtained :

. - 0, . d [,
) = 4 ' I I
b, ;I'Oa,,—}‘;}’dl(ﬂa,l (13)
where
Du = g(ﬁw + ii/‘r) - g(f‘k 4 [";,k + lik."ll}ﬁk) ( |6)

can be cusily shown to be frame dependent. In order that objective quantities appear in the
first member of egn (15) the following relfation can be used[4]

I)I/=D:;+"/1ka;—-le;Vk/ (l7)
where W, = Y(n,,—4,,) is the spin tensor and
Dg = [)c;- ;Vai Dk1+ Dl& ;Vk; = E(l'l', j"f‘l},fﬁ) - §(!}: k‘}ft;'j’{"‘}k;:ﬁ;:k +z}t=kdj{k ":}k;:&k;‘;) (‘8)

(referred to as the “corotational derivative of D,;”") may be easily proved to be frame
independent. As a result egn (15) becomes

o f .1 d
D) = Z}.,;;?f + Zi., [:3; (N3~ WalNG+ N Wk,] (19)
i x

x

where the plastic multiplier accelerations i, are subjected to the constraints
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4L=0 ifp,<0and i, =0
#~»20 ifp,=0and 4, =0 (20)
s free ifo,=0and 4, >0

which may be expressed as follows in a more compact form:

@i,=0and 2,20 if o, <0and i, =0 (V)

@4, =0and 2, free if o, =0 and 4, > 0 (V}). @n

In eqn (19) the second term of t}\e second member always vanishes. In fact, when the
material point lies in a rigid region, 4, = 0; besides, considering that[4]

d .
CT!(R”) = R,; = I’V«‘kRk,’ (22)
we have

d d . ) )
a.; (N:”) = d[ (R’hN’hkRik) = i’/"-‘Rﬂl[v‘xhk Rjk + R:hN:hk W/rRrk
= lV“lV:‘” + N:"' L’/'/’ = ;Vi.‘N:xl - N:ir ;V” (23)

thus, in the plastic region too (where 4, > 0) the second term of the second member of eqn
{19) vanishes. This implics that the plastic multiplicr accelerations are always governed by
the condition

Py =550 Ly s (24)
1§ he - vai ¥ oxif

*
2 (/(7,,-

stating the normality of the corotational derivative of the rate of the deformation tensor to
the field surface.

In conclusion, the rigid -viscoplastic constitutive laws for large strains in the Ewlerian
approach can be summarized in the following relationships:

0, = Nuo,—k, <0 23
D, =Y LN, (26)
i20, @i, =0 2mn

0 + (o, -
D = Z; i = ;;.,N,,., (28)
Oi=0and 2,20 ifp,<0and L, =0 (V) (29)
@i, = 0and 4, frec if @, =0and 4, >0 (Vp) (30)

where eqns (29) and (30) define the rigid Vg and plastic V, regions, respectively, and &, is
given by eqn (4).

2.2. Lagrangian approach
Let the assumed independent variables be the positions a; occupied by a particle at
time s =0, i.c.
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x; = x,(a) = ai+ua, 0

and let the stress and strain fields be described by Kirchhoff's and Green's tensors §,, £,

respectively. The yield domain, eqn (25). becomes

@2 = NiuSu—k, <0 (32)
where
Po Cay Cay
S = p ox; Ox; %is
_pdndy ey
Y po Ca, da ™
po and p being the initial and final density, and where, using eqn (25) once again
s _POx0x
Nzhk - Po aa" allk xif
4
N;i;=@€ﬂ€gﬁ/vfm- oY
p Ox; Ox;
The flow rule, eqn (26). is transformed into
(3%

. s P
éi} =Z}-a~[-;quu

as can be easily shown starting from eqn (26) where N3, is replaced by N3, using eqns

(34) and taking into account the relution[4]

(3.\’,, axk (7.?,, Oxk
oo il ] . 6
£y = Du da; du;  Ou, du; EuFl, (36)
By a time derivative of eqn (35) we have finally
37N

f s los yi S (Prys
Eij"' 2;,}‘: I) Nnj'*"z;;{udl(p Ncu)-

Equation (37) shows that £, is not normal to the yield surface. Taking into account eqns
(A21), the last term of eqn (37) can be transformed as follows (denoting /da, with /j):

- 37

d : .. d
Z'{’dr (%2 Ni;,-) = Z"«Nma;(-‘h/ka/iRmRu)

and then using eqns (22), (10), (13), and (12) and remembering that W, = (i, —u,,)

. d [pe .
s - . .
z A—|— N:ij = Z 2o N (thayrxi 7+ xh/.'uk/;)
= di\p :
F Nk Xn2Xk 7 W o + NV i X, i Xk Wi

= Yy riy 7o Vg Xay iy 54 Uagn i, i Xes 7
-+ li,‘,,,,.\',,/,vxk/}'d,,/,,,). (38)
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In conclusion, the rigid—viscoplastic constitutive laws for large strains in the Lagrangian
approach can be summarized in the following relations:

= NuSu—k, <0 (39
: Po s

E:/ = ZAz—p_in/ (40)

20, ¢i=0 (1)

E, =Y EBN‘»-&-Z}C g(@NS ) (42)

if - :p aij -~ :dt p aij

@A, =0and £, >0 if 9, <0and 4, =0 (Vg (43)
@4, =0and 1, free if ¢, =0and 4, > 0 (V) (44)

where eqns (43) and (44) define the rigid Vg, and plastic Vi regions, respectively, and &,
is given by eqn (4).

2.3. Determination of plastic multiplier rates

A problem ever encountered when solving a rigid-viscoplastic dynamic problem is find
oul whether at a given time ¢, a particular point with a known deformation gradient D, or

£, lics in the plastic or rigid region. This can be accomplished simply by determining the

plaslm multiplicr rate 4, corresponding to that particular D, as 1, is positive in the plastic
region only, whereas it vamshcs in the rigid one.

With reference to the Eulerian approach, through the same proof used in Ref. [2] but
replacing the flow rule by the condition

=) N34 (43)

x

it is possible to derive the following statement : the quadratic functional

Qi) = . ZH,,,A i3 +Zr i* (46)

z/l

defined for all plastic multiplier rates 1* satisfying the conditions

I
Dy = sty +iy) =Y N3 A*
'/ 2 /J i Z’: J (47)
=0

attains an absolute minimum for the real value of the plastic multiplier rate 4,.

If the hardening cocflicients H,,4 define a positive definite hardening matrix, the solution
Z, will be unique.

The stress state g, corresponding to the deformation tensor D,; not always can be
determined uniquely. In fact, the only limitations on the stresses o, are set by conditions
2N, i.c.

Nyo,—k,=0 if 4,>0

N:l]aij—k1 <0 if ;:, =0 47"

which may not be sufficient to determine o, univocally.
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Finally, using the Lagrangian approach the above statements still hold after replacing
the normality condition (47) by the new one

E = z*””wg
i Z 7] 47

ir>o.

3. FORMULATION OF THE DYNAMIC-LOADING PROBLEM

3.1. Eulerian approach

Let us assume that, at a given time ¢, the current configuration «, of 2 body having
volume V and surtace S, the density p, the field of velocities «,, the surface tractions 7, on
a part Sy of S, the surface accelerations {/; over the remaining part S, = S—S; of the
surface, and the body forces X, = pF; are known.

The dynamic-loading problem consists in determining the stress field o,; and the
acceleration field &, for the same instant . From the solution of this problem, when dealing
with time-dependent known quantities X,(¢). 7,(?), u.(2). () and U,(¢). the whole dynamic
history, i.e. the unknown functions #(r), ¢,(1) can be obtained simply by an incremental
process over time ¢,

All the conditions governing the dynamic-loading problem at a generic instant ¢ arc
given below.,

(a) Equilibrium cquations

o+pFi=pi, mV
o,n; =T, onS; (48)

where 6, are the components of the Cauchy stress tensor.,
{b) Compatibility equations

ey = Wity + 1=ttty )

é,; = %(ﬁiff*' 1) — (egdiny; + tigi€s )

€= Dr‘f ~ (Dt ;= € Vinga Uiy j— Hingi€pac iy
+ €ty — tiny thign) + €x (B — it n)
1y Dy j— b Conty)— Uigitieey,)  in V

i,=U; ons§, 49)
where ¢, are the components of the Almansi strain tensor; besides
Du = é(ﬁ./; o+ di ) = Ythy bt + gt e) (50)
and the objective derivatives D, of e,; and D/} of é,; are

D, = §(33f;1+13m)

0 -« . 17 . . .. R
D ij é(uilj+ u m) - 2(“&},‘ Uy b Uy~ Uy U g = Uy Uy j)-

(1)

I

(c) Constitutive laws, given by eqns (25)—(30). The velocity field 4, appearing in the
above equations can be obtained as indicated in Section 2.3 form the known field #; (which
define D, according eqn (51)).
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3.2. Lagrangian approach
All the equations governing the dynamic loading problem at a generic instant ¢ are
given below.

(a) Equilibrium equations

b ax; .
o (S,k ‘Y‘)‘FPOFO.' = poii; inV,
ca,

da,
52
cx; (52)
S"‘E‘_a:nw =Ty on Syr
where S, are the components of the Kirchhoff symmetric stress tensor.
(b) Compatibility equations (denoting d/da, with /j)
E,’,‘ = %(“,/l"*'“,/f'*" uk/,'uk/j')
Ei, = g(l;,/j"f' l'l,,,-+l;,,,,-uk/;-f-uk/,-tik/;)
E,-,- = %(l.l.‘/j"f‘(.l'j/,""l'l'k/,’llk/j"*' uk/;ﬁk/;)+d,‘/;lik/; in VO
ii,= U, on Sy, (53)

where £, are the components of the Green strain tensor and £,; and E,, are objective by
definition.

(¢) Constitutive laws, given by cqns (39)-(44). The velocity field £, appearing in the
above equations can be obtained as indicated in Scction 2.3 from the known ficlds «; and
i, (which define £, according eqn (53),).

4. MINIMUM PRINCIPLES

4.1. Eulerian approach
Theorem 1. The functional

(ol i¥) = 5 | pitir dV+ 5 ‘ O [thipa Uiy Wiy U, — Uity AV
2 . 2 )
—J anU; dS, (54)
s,

defined for all stresses a und accelerations Y satisfying the conditions

ofi+pFy=pip inV
aini=T, onSy
Nyoy—k, =0 inl;
Njor—k, <0 in ¥V, (55)
attains an ahsolute minimum for the actual stress a,; and accelerations i, fields, Vy and Vy

being the plastic and rigid regions defined by conditions (29) and (30), respectively.
Proaf. In order to prove the theorem, it suffices to show that the difference

AD = O(c}}, i) ~ V(g i) (56)

is always nonnegative for any arbitrary g, ii* satisfying conditions (55). Assuming
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Adi, = it — i (57)

the difference, eqn (56), becomes

i i
AD = 5 J;PA"‘-;A‘?;‘ dV+LpAﬁjﬁj dV'*'i i A“i;[&ugkfj + gl +t}nka}}'k“dk/idk,j} dv

- J Aoynl, dS,. (58)
S,

Using Gauss's theorem and eqns (55), and (55),
J‘ pAl‘iIiiI dV = j Ad,j,,ﬁj dV = —J‘ Adijﬁj/, dV +J‘ AU"]”;U} dSu+J Aa,-jn,Uj dST (59)
14 | v Su Sr

where the last term of the second member vanishes because Ao, = 0 on S;. Then the
difference, eqn (56). becomes

i 1
A(D - 2‘ J‘ pAﬁlAl‘l‘j dV_J’ AO',-jt'l',,, dV+ ‘2‘ J‘ Aau[li,'/kliku‘i"l}*,jﬂ;)k +l),/kal’/k‘—du,‘aull dV
¥V v v

(60)

where the second integral, owing to the symmetry of the Cauchy stress tensor, may be
written in the form

..J;Aauii,,‘ dV = - % J;Aau(ii,/,+ii,,,) dv 6!
and the difference A®, by virtue of egn (18), becomes
Ad = ; J:,pAii,Aii, dV-J;Ao,,D,",dV. (62)
The first term on the right-hand side is always positive for any non-vanishing Adg, and cqual
to zero if and only if

it =i, inV. (62

Using eqn (28) the second term becomes
v 2 JV

In region Vp (where @, = 0 and 4, > 0). from eqns (55), and (30) it can be stated that



608 A. CariNt and O. DE DonaTo
=) J Ao, N3, A dV =Y ‘f (N7, 0,—k)i, dV =Y J 0.4, dV =0. (64)
1 JV 2 JF 2 JF

In the remaining region V' (where i, = 0), from the condition
(px;; = (N:4j61/—kx)/"'; =0 (65)

we can write eqn (63) in the form
-y ﬁ Ao, Ny, A dV = =Y ’[ (N3 ot —k)4, dV (66)

which will never be negative as a result of condition (55), and of the nonnegativity of 4, in
Vg stated in eqn (29). It will be equal to zero if and only if

N%or—k,=0 whered, > 0. (66")
This proves that
Dok i) = (o, u) (67)

for any stress o) and acceleration @ ficlds satisfying conditions (55). the equality sign
holding if and only if the accelerations @} satisfy eqn (62°) and stresses o) satisfy eqn (667).

This proves the theorem. It follows from this proof that the actual acceleration field 4,
is univocally defined ; on the contrary, the actual stress ficld o, may not be determined
univocally because the only limitations that we must respect are

N g*—k,=0 inV,
Niat—k,=0 if4,>0 inV,
N%at—k, <0 ifi, =0 in V¥V, (67")

which may not always be sufficient to determine o univocally.
Theorem 1. The functional

(i, A¥) =5ﬁpﬁ;"ﬁf dV—-J;pF,z'if dV—-J T,i? dS-,-+ZJ:k,).';' dv  (68)
< Jv g N, 2 ‘

. . .. . . . . 1° N . ..
defined for all accelerations &* and plastic multiplier accelerations A} satisfying the conditions

it=U onsS,
|
Y Ny A = o G, +4it) = E(uk,,,u,,k Uiy 800 Uiy b — 1t ) = DJ* in ¥V
~ 2
220 inVy (69)

attainy an abhsolute minimum for the actual accelerations i, and plastic multiplier accelerations
£y Vi being the rigid region as defined by eqn (29).
Proof. The following proves that the difference
AV = W(i*, 42) - V(i 1) (70)

is always nonnegative for any arbitrary ii*, * satisfying conditions (69). Assuming
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. e =
Ad; = ul—u;

AL = A2—4, (7n

the above difference becomes

! :
AY =5 J pAiAd, dV+J' pii, A, dV—J pF,Ai, dV—f T,Ai,; dSr+Y f kAL dV.
v v v St z ¥

(72)
Using the equilibrium equations, eqns (48), and Gauss's theorem we obtain
Lpﬁ,Aﬁj dV% J; g, A dV+J;pF,»Aiij dv
= J;r T,Ad; dST-—J;c,»,-Aii,,,»dV+J;pI-',Aﬁ, dv (73)
and consequently the difference AW reduces to
AV = ; ﬁ pAii,Adi, d V—La,,Aii,,,. d V+§: ‘[ kAL dV. (74)

The symmetry of the Cauchy stress tensor and the use of eqn (51),, enable us to write the
sccond integral of eqn (74) in the form

- L 6, Ali, dV = — % ﬁ 0., (Adiy, +Aidy) dV = —La,,AD,‘; dv. (75)
Then
AY = ; L pAii,Aii, d V—Lo,,AD,", d V+; Lk,A/‘.', dv (76)
which, using condition (69),, is transformed into
AY = % ﬁ pAiiAii d V—; J;(N‘;,-,o,,—k,)A).', dv. an

The first integral is always positive and equal to zero if and only if

-
u,

=i inV. a7)

The second integral, in the region ¥, vanishes, because ¢, = 0; in the remaining region Vg,
by virtue of the condition

@uhy = (N30, —k)A, = 0 (78)

the term reduces
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-y J: (N,0,~k)AL, dV = -Y JL (N%,0,—k)it dV (79)

which is always nonnegative for every non-vanishing A* in consequence of condition (69);
and because ¢, < 0, and is zero if and only if

This proves that
(i, AY) = W (i 4) (80)

for any acceleration field #* and plastic multiplier accelerations A* satisfying conditions
(69). the equality sign holds only inasmuch as eqns (77°) and (79") are satisfied.

This proves the theorem. Again, it follows from this proof that the actual acceleration
field #; is univocally defined ; on the contrary, the actual plastic multiplier accelerations 4,
may not be determined univocally (even for non-vanishing hardening coefficients H,).
because the only limitations that A* must satisfy are

LY 0
LNy =D
x

A= 0if Nyo,—k,=0 in Vg
A =0if Njo,—k, <0 in Vg (80

which may not be sufficient to determine A* univocally.

4.2. Lagrangian approach

A simple way to derive a thearem corresponding to Theorem 1 but involving quantities
relevant to the Lagrangian approach only, is to adopt a similar proof as Theorem I starting
from the following statement.

The functional

1 1
(P _ P - P PR
DS, i) =5 | peital dVe+ 3 S (Xuythy pltgy, =+ Xayr X gy i
2 v Vo

[0

+ ur/‘l'xk/]'dl(/r - ur/fur/f) d VO - J' xk/fs;;nﬂl Uk dSu() (8 l)

Seo

defined for all stress St and acceleration i@} fields satisfying the conditions

d dx; .
( * 'i)'*'POFm = poli* inV,

da, \""* 0y
ax,
Sl‘k'a"a—k"h)/ = To/ on Sro
N Sh—k, =0 in Vy
N3uSk—k, <0 in Vg (82)

attains an absolute minimum for the actual stresses S,; and accelerations i, Vey and Vg
being the plastic and rigid regions referred to the initial configuration.
Again, the proof consists in showing that the difference
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ADL = OY(SE.u*) — DS, . i) (83)
is always nonnegative for any arbitrary S3. i satisfying conditions (82).
Assuming
ASU = S; - S,/
Aii; = a4t —ii;
All = X, ,’li,‘ ]'lih P o YA 4 J'li;, ,lik U, A ]'lik -+ u, ,’li, i
B,=A,-2i 4, ; (84)
we have
L l o o e l @.\’,‘ oo
AVt = | poAiAG dV+ | podiiidi, dVe+ - | AS, B, dV,— 3—AS;nUg dS..
2 Vo Vo 2 L Suo c‘3a1
(85)
Using (equilibrium) eqns (82), and (82); and Gauss's theorem, we obtain
. ax,
poliigi, AV, = AS -,‘ 4, dV,
‘.(l 0(
j AS,,, =, ;dV,+ J As,,k n,,,U dS.o
by ’ S
Loox, .
+ A;S,k S Mgy, U/ dSr() (86)
AP (.‘Uk

where the last term on the right-hand side vanishes because AS, = 0 on Sy Then the
difference, egn (85), becomes

! v !
Ad = f poAii A, AV, — f AS,*( u,/,) dVot 5 4( AS, B, dV,
vy 2

where on account of the symmetry of the KirchhofT stress tensor, and using eqns (A3), the
second integral may be written as

dx ] ax; &x
- L) dV, = - - e+ i ldy
J:“, ASM("“& h I) ¥ 2 J:’.. Aslk[aﬂk it éa, “ E] °

I

=-, J: AS i [li p+ i, ju.6 + 41, ¢+, g, ;1 dV, (87)

- 0

and the difference AdY, by virtue of eqns (53). becomes

D o

ADt =

|
5 J‘ AS‘/'/“,/ dVo. (88)
¥o

J poliiAli, AV, — j AS,E; dV,+
v VY

Ineqn (88) the first integral of the second member is always positive for every non-vanishing
Ad, and equal to zero if and only if

SAS 24:6-8
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G =, in ¥V, 89
In consideration of eqn (42) the second term on the right-hand side of eqn (88) becomes

.. . d
_f AS;E,;dVy = “Zf AS,’ ,”° NS, dV,— Z[ AS,;l,df (""Nf,,)dm, 90)
Vo z

where, using eqn (38)

1
'—Z J‘ r,r :d ( N;S;;) dVO -3 J: AS:';‘AU dVO- {90‘)
Then the difference A®" of eqn (88) becomes

! .
AQ" = Jl  polii,Aii; dVo— Y £ Asija,%ﬂzvfif dv,. CIN

In the plastic region (where @, = 0, 1, 2 0, 9,4, = 0), from condition (82), and (30),
it can be stated that

_ZJ‘ AS‘/A";;;;,N:!I(’V():ZJ: (N:;/S;/ ,\1))~ I“dVO-ZJ Py Ay ,.“ 0_
2 Va x ‘o

In the remaining region (where 4, = 0), from the condition
Pihy = (N3, S~k )iy =0

we can rewrite the last term of eqn (91) in the form
). Ao s - ) Pu
"z AS:/ Nzn dV(I = "'Z (Nu/ Slp -k ) (92)

which will never be negative on account of condition (82), and of the nonnegativity of 4,
in Vg stated in eqn (43).
This will be equal to zero if and only if

N3, St —k,=0 where 2, > 0. (93)
This proves that
OY(SE. ir) = DS, )

for any stress S} and acceleration 4* satisfying conditions (82), the equality sign holding
if, and only if, the accelerations & satisfy eqn (89) and the stresses S} satis{ly eqn (93). This
proves the theorem.

It follows from the above proof that the actual acceleration field & is univocally
defined ; on the contrary, the actual stress field S;; may not be univocally determined because
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the only limitations that we must respect are

NESt—k, =0 in Ve
NS —k, =0 if4,>0 in Vg
NLSE—k, <0 if4, =0 in Vg (94)

which may not always be sufficient to determine S; univocally.

Finally it is easy to show that the statement of the present theorem could have been
obtained starting from the corresponding Eulerian formulation (54), (55) and using the
formal relationships (see Appendix) between the variables of the Eulerian and Lagrangian
approach.

A theorem corresponding to Theorem 11 but involving quantities relevant to the
Lagrangian approach can be derived by a similar proof, starting from the following
statement.

The functional

o | .
‘{‘“(l'i,"'./.,) =4 j potitit an—J' I’()Fn:"‘.:' dVl)—J Ty it dSrn +Z J k:l: l/? dv,
< Jv, Vo Sra 2 Jy
95)

. . . . " . A . P o g e .y
defined for all plastic multiplier accelerations 4} and accelerations G¥ satisfving conditions
=, ondS,,

o = 5 X (‘ ¢ ,,,)+Zz, ("" v:,,) in V,

x

I: 20 in ¥y (96)

attains an absolute minimim for the actual accelerations i, and plastic multiplier accelerations
i Vo being the rigid region referred to the initial configuration.
Again, the point to be proved is that the difference

AWY = Wi, 26 - WL 1)

is always nonnegative for any arbitrary 2%, ii* satisfying conditions (96). Assuming position
(71). the above difference becomes

x
A‘?L = ,; J ﬂoA[’i,»Aﬁ, dl”ﬂ"*"J‘ [)()l’l’,Al‘(', d VO“J ﬂoFﬂ,Al’l‘, dl”n
2 Jv, Vo o
- f ToBi, dSro+ Y J k,A).;%‘i AV, (97)
S 1 Jba

Using the equilibrium equations, eqns (52), and Gauss's theorem we obtain
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cx,
J poli,Adi, V', = f (S,,: %) Aii, dVo+ j poFaolii, dV,
v = 7 :

o Cdy Vo

€x;
= J' Tr),Aa, dSTo“"j S,k ?"“All,/'d;,u"l"j p()Fo,Aﬁ, dVO (98)
Sro by Cay by
and then the difference A¥" reduces

1 éx; -
A‘{’L = 5 j pgAi"‘Aﬁ, dVo‘—J. S]’k«_}iAﬁdeV’O%‘Z j\ k,A/.,{)‘g dV(). (99)
- Jyy Vo cay 3 JVy 14

The symmietry of the Kirchhoff stress tensor 5. the use of eqns (A3) and (53); make it
possible to write the second integral of eqn (99) in the form

a.r,‘ - y l 6"-1' . 0 .Vi e
- ,[’,, Si (B_a: Au,u-) dv, 5 J:»o Si [5(:: Atiy ;+ éva—; Au,,gJ dV,

!
-z j SalAdier+ Al e+ Ad ¢ +Aupn 7] AV
r()

it
|
i

i

9
e

_j SiAE, dV, (100)
"'0

1 . -
AW = o j ol Ad, dVo"J‘ SyAL, qu""Z J k,A/.,I-;F dv, (ton)
l.ﬂ 4 ‘.n

P4 (, b3

which using condition (96), is transformed into

I . -
AV = | pAi A, dV,~Y | (N3 Su—k)AL, Po g, (102)
2 b, x JYe 7

The first integral of eqn (102) is always positive and equal to zero if and only if
@*=u, inV, (103)

The second integral, in the region Vi, vanishes because ¢, = 0 in the remaining region
Vo, by virtue of the condition

Py "'z = (N:;[Sx/—kx)):x =0

the term reduces to
-y ﬁ . (Nf,kS,&—k,)AZ,(;ie’-dV,,: -y ﬁ ‘ (;vf,ks,,‘-k,)}.‘:‘;" dv, (104

which is always nonnegative for every non-vanishing A* as a consequence of condition (96),
and because ¢, £ 0, and is zero if and only if

=0 where NI SE—k, <0 in Ve (105)

This proves that
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Wh(ar, i) = Y, L)

for every acceleration #* and plastic multiplier acceleration A* satisfying conditions (96),
the equality sign holding if and only if eqns (103) and (105) are satisfied.

This proves the theorem. Again it follows from this proof that the actual acceleration
field & is univocally defined ; on the contrary. the actual plastic multiplier accelerations 4,
may not be determined (even for non-vanishing hardening coefficients H,;) because the
only limitations that 4* must satisfy are

. - . d

A2<0 if NSk, =0 in by

=0 if N3S,—k, <0 in Vg (106)

which may not always be sufficient to determine S;; univocalily.

For this theorem too, finally it is easy to show that the statement of the theorem could
have been obtained starting from the corresponding Eulerian theorem formulation (95),
(96) and using the formal relationship (see Appendix) between the variables of the Eulerian
and Lagrangian approach.

5. LINKS WITH PREVIOUS THEOREMS

The theorem of Stolarsky and Belytschko[3] and the less recent theorems of Capursol2]
appear to be different forms of Theorem [ and special cases of both theorems, respectively.
Stolarsky and Belytschko'’s theorem corresponds to Theorem II of the Eulerian
approach when the functional dependence from the variable £* and the relevant conditions
arc implicitly expressed in the functional. This may be obtained by defining as kinematically

admissible the ficlds o, ¥ satisfying the following conditions:

(a) 4} satisfics the boundary conditions (¢qn (69),)

(b) o, arc consistent with the relevant field D,, eqn (26) in Vp. In Vg they correspond
to D)* through eqn (28) whcnz_ D,‘j“_is given by eqn (18) &, being replaced by &} and
respecting limitations (29) with 4, = 1* > 0.

In other words, the stresses o (if}') corresponding to kinematically admissible accelerations
¥ are defined both in the region Vp and (although not univocally) in the region Vg, by the
conditions

D*(it) = N3, 23

o8 —k,=0 if 1*>0
NS, oki*)y—k, <0 if A*=0 (107)

where the last two equations can be more conciscly expressed as

(N3ya8—k,)it = 0. (108)
Then, bascs on eqns (68) and (69) and using eqns (108) and (107), Theorem I can be
written as follows.

Among all kinematically admissible fields of accelerations u*, the solution ii; minimizes
the functional

|
JGi) = 5 ﬁ piifi} dV-J:_pF;ﬁf dv— L Tt dSr+ L oR(ENDI*GE*) dV. (109)

or

This is Stolarsky and Belytschko's theorem[3]. which, however, in the last integral of eqn
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(109), loses the quadratic form of the functional, typical of the above Theorems I and II,
when the yield surface is generally convex (not necessarily piecewise linear) and N7, and
k, are suitable functions of ¢

Finally, the particularization of Theorems [ and II of the Lagrangian approach to the
case of small strain-finite displacement theory quite naturally feads to Capurso’s theorem[2]
when considering that the new configuration of an original infinitesimal element must
coincide with the initial one. except for a rigid body motion of any amplitude which has
taken place. i.e.

p=py d¥=d¥l,

@a,» 8\,(
ax, 2w
Fy=RUy; >R,
Ex’j= Fm:‘DmnFnl‘z RMiDmanj~ (![O)

Besides, in eqn (42) the last term of the second member vanishes as can be shown using the
equivalent expression (37°), taking eqns ({10) and (8) into account, i.e.

d [dx, cx d
df ((7(: { uk he Rh) (Riu Rkthr Rh) = (alr();r) = (I | l)
H

and, then, eqns (40) and (42) of the constitutive laws, reduce to
Z/ N3

£, = }:) NE,. (112)

Using the above positions, Theorems [ and I of the Lagrangian approach come to cotncide
with Capurso’s small-strain, large-displacement theorems.
In particular functional (81) written in the form

i ..
(S i) = - J‘ potita¥ dVy+ 3 f SE(A;— 2000, dV(,—J‘ X Stng Uy dS,s
— Vy < e Y,
(113)

transforms itself, taking into account eqn (90°), into
‘b ( e Il ) = ; ; p"u, tl, d Vu — y S,, u,{:,’u,“‘ d V‘) - ¢ '\k"l’Sfl Ny, Uk dsu(} (! 14)
- 9 oty

which is the functional of Theorem 1 of Capursof2].

@
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APPENDIX
The above widely used relationships between static. kinematic and material behaviour quantities relevant to
the Eulerian and Lagrangian approach are summarized here.
Denoting by x, and g, the current (at time ¢) and the original (at time ¢ = 0) positions of the same material
particle, the Eulerian and Lagrangian descriptions of the geometry are based on the relations[4.5]
a;, = x()—u[x(0.¢] (Eulerian) (Al)
x(f) = a,+ufa.) (Lagrangian) (A2)
implying (if ¢/Ca, is denoted by /J) the following relations :

éa, “u,

¢
ox, = .,“;,:‘__I-éij-“i/j
Jx, Cu,
P d,+ s O, +uy; (A3)
! ’
and the following material time derivatives:
d . Ou, .
i (W) =u, = a + Uty (Ad)
d o) ) d [, ou, AS
di\ax, ) =t g\da ) = da) (A3)
d {du, . Lo d {du, _ i, A6
de\ax,/ Mg ~Heathae gy da,) ~ Oa, (A6)

Deformations
Almansi ¢, and Green £ tensors as well as the deformation gradient £, are given and correlated by the
following relations :

¢, = g("n//"'um_“hluk;/) (A7)
En/ = g(“:/;“* u,,,—+ uk;fuk(;) (As)
F,=2% s, S A9
4T e, M a, (A9)
la, da, i ul,, Oa.
e, = EMO—;‘ "T‘:' e, = 3 Fu— 0\,' (AlOQ)
2x, 0x, .
E,=eni> 55 E = NFFy =0, (AlD)
fa du, Cu da, da
s =2yt 51—, F,=2E,—+ L Al2
F‘”D. “ut Ox, éx, " hox, T dx, ( )

Stress density and forces
The Cauchy 0, = g, Kirchhofl' S, = S, and Lagrange 7, # T, stress tensors are brought into relation by

_pu',(’\', __p_cv,
a,, Po L(l,, b(lk L3 au Po Oa‘ Thl (Al})
Pa Ca, Ca Ja
Si= 5 g Si=Tag (A1)
X
Pa ox
T, = ‘; ae 0 Ty=Sug)! (A15)

while density and forces are related as follows:
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podby=pdV, Fu=F, T,dS,=T,dS

cq, P
——ny dSy = —n, dS
éx, Myt

where 0" refers to the variable value at time ¢ = 0.

Yield functions

Depending on the chosen stress space, the piecewise-linearized vield surface. is expressed as

@, =Ny, 0,—k, <0
Y= ‘vfus//_kx < 0
0, =N,6,~k, <0

where d, are the components of the corotational stress tensor
d',, = Ry, 0 er/

R, being a generic rigid body motion.
The relations between the outward normal unit vectors &, are

o Cd, Ca,

o _ - YO .S
/\v,,, = RN Ree Nyi=— e A RN, Rk/
0N, O
o - " Po ‘a, "”& .5
Nu= RN Ry Ny = o = N

p X, Cx,

h Ty S Ty

. ) X, X - . ) X, (X

5 ¥ LY IL n X
N, = R.N, R, N = :

"y "y
o Pu, (“(I,

»
Ay Ve
Po fd, Ca,

(Al6)

(Al6)

(A17)

(A18)

(A19)

(A20)

(A2D)



